Mark Scheme (Results)

## January 2017

Pearson Edexcel International GCSE Mathematics B (4MB0) Paper 01R

## Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

## www.edexcel.com/contactus

## Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2017
Publications Code 4MB0_01R_1701_MS
All the material in this publication is copyright
© Pearson Education Ltd 2017

## General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)
- Abbreviations
- cao - correct answer only
- ft - follow through
- isw - ignore subsequent working
- SC - special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- eeoo - each error or omission


## - No working

If no working is shown then correct answers normally score full marks
If no working is shown then incorrect (even though nearly correct) answers score no marks.

## - With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.
Any case of suspected misread loses A (and B) marks on that part, but can gain the $M$ marks.
If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.
If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.
If there is no answer on the answer line then check the working for an obvious answer.

## - Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

## - Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

International GCSE Mathematics B Mark Scheme

| $\mathbf{Q}$ | Working | Answer | Mark | Notes |
| :---: | :--- | :---: | :---: | :--- |
| $\mathbf{1}$ | $360-(152+122)$ OR <br> $(180-152)+(180-122)$ | 2 | M1 |  |
|  |  | $86^{\circ}$ |  | A1 |

NB. Allow $62+32+x=180$ (M1)
Allow the 'completion' of a pentagon with the result that $90+90+152+122+x=540$ for (M1)
Accept $x+152+122=360$ for (M1)

| $\mathbf{2}$ | $\frac{275}{5500}$ OR $\frac{0.275}{5.5}$ | 2 | M1 |  |
| :--- | :---: | :---: | :--- | :--- |
|  |  | $\frac{1}{20}$ |  | A1 |

Notes: 1. Fraction with both numerator/denominator in grams or kilograms for (M1)
2. Do not accept 0.05 or $5 \%$ for (A1) unless you also see $\frac{1}{20}$ as well.
3. Ignore any units given (e.g. g or kg ) in the final answer.

| 3. | $15 \cdot \frac{2}{3} x-15 \cdot \frac{8}{15} x=15 \cdot \frac{16}{5}$ (o.e.) <br> (correct attempt to remove denominators) | 2 | M1 (no slips) |
| :--- | :--- | :--- | :--- | :--- |
|  |  | $x=24$ | A1 |

Note: $\quad$ Accept $\frac{10}{15} x-\frac{8}{15} x=\frac{16}{5}$ (o.e.) for (M1)

| Q | Working | Answer | Mark | Notes |
| :--- | :--- | :--- | :---: | :---: |
| $\mathbf{4}$ | $\frac{12.5}{100} \times 0.95 \times 32000$ (o.e.) |  | 2 | M1 |
|  |  | (£) 3800 |  |  |
|  |  |  | A1 |  |


| $\mathbf{5}$ | $(5-3 \times 7)-(5-3 \times 12)$ (o.e.) |  | 2 | M1 |
| :--- | :--- | :--- | :--- | :--- |
|  |  | 15 | A1 | (accept -15$)$ |

Notes: 1. Accept $5 \times \pm 3$ for (M1)
2. Accept 15 or -15 for (A1)

| $\mathbf{6}$ | $w(x-y)+z(x-y)$ or $x(w+z)-y(w+z)$ |  | 2 | M1 |
| :--- | :--- | :--- | :--- | :---: |
|  |  | $(w+z)(x-y)$ |  | A1 |


| Q | Working | Answer | Mark | Notes |
| :---: | :---: | :---: | :---: | :---: |
| 7 | $6 x^{5}$ or $+\frac{18}{x^{4}}$ (one term correctly differentiated) |  | 2 | M1 |
|  |  | $6 x^{5}+\frac{18}{x^{4}}$ |  | A1 (accept $6 x^{5}+18 x^{-4}$ ) |
|  |  |  |  | Total 2 marks |

Notes: 1. Accept $6 x^{5}+18 x^{-4}$ or $6\left(x^{5}+3 x^{-4}\right)$ or $6\left(x^{5}+\frac{3}{x^{4}}\right)$
2. Using the quotient rule: $\frac{\mathrm{d}}{\mathrm{d} x}\left(\frac{x^{9}-6}{x^{3}}\right)=\frac{x^{3} \cdot 9 x^{8}-\left(x^{9}-6\right) \cdot 3 x^{2}}{x^{6}}$ earns (M1)

| $\mathbf{8}$ | $\frac{1}{2} \times 12 \times 15 \times \sin A=35$ |  | 2 | M1 |
| :---: | :--- | :--- | :--- | :--- |
|  |  | $\frac{7}{18}\left(\frac{35}{90}, 0.389 \ldots\right)$ |  | A1(o.e.) (do not ISW if candidate <br> finds the angle) <br> NB: $\hat{\mathbf{A}}=\mathbf{0 . 3 9 9}$ radians |

Note: An incorrectly cancelled fraction, from a previously correct fraction does not lose the A mark.

| Q | Working | Answer | Mark | Notes |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 9 | $\frac{1}{9}+125$ |  |  |  |

Notes: 1. $\quad$ Accept $\left(\frac{1}{9}+125\right) \times 9$ or $1+5 \times 15^{2}$ for (M1)
2. Where decimals are used for $1 / 9$, must see 0.11 (or better) written down for (M1).

| $\mathbf{1 0} \mathrm{a}$ | $\frac{2 \cos 30-1}{\sqrt{12288}-64}$ |  | 2 | M1 |
| :---: | :---: | :---: | :---: | :---: |
|  |  | 0.015625 |  | A1 |
| (Do not accept $1 / 64$ ) |  |  |  |  |
|  |  | 0.01563 | 1 | A1ft |
|  |  |  |  | (Accept 0.01562) |

Notes: 1. Accept a correct standard form format in either part.
2. For the follow through in (b), we must see more than 4 significant figures in part (a).
(Of course, the correct answer seen in part (b) earns the (A1) irrespective of what is seen in part (a).)

| $\mathbf{1 1} \mathrm{a}$ |  | $2,4,6,8,10$ | 1 | B1 |
| :---: | :---: | :---: | :---: | :---: |
| b |  | $1,2,3,4,6,8,9$ | 1 | B1 |
| c |  | $2,4,6,8$ | 1 | B1ft provided that this set is non-empty |
|  |  |  |  |  |


| $\mathbf{Q}$ | Working | Answer | Mark | Notes |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1 2} \mathbf{a}$ |  | $(11)$ | 1 | B1Do not penalise missing brackets <br> here |
| $\mathbf{b}$ |  | $\left(\begin{array}{rr}3 & -2 \\ -12 & 8\end{array}\right)$ | 2 | B2 |


| 13 | Correctly identifying a factor in the numerator or <br> denominator which leads to the required solution. <br> Correctly identifying both factors in the numerator <br> and denominator $((x-2 y)$ and 2 ) |  | 3 | M1 |
| :--- | :--- | :---: | :---: | :---: |
|  | $3 x^{2} / 2 y$ | M1 dep |  |  |

Notes: 1. For the first (M1), accept for the numerator $6 x^{2}(x-2 y)$ or $3 x^{2}(2 x-4 y)$. Do not accept $6 x\left(x^{2}-2 x y\right)$ or $3 x\left(2 x^{2}-4 x y\right)$.
For the denominator accept $4 y(x-2 y)$ or $2 y(2 x-4 y)$
2. $\frac{6 x^{2}}{4 y}$ earns (M1)(M0)(A0)

| Q Working | Answer |  | Mark | Notes |  |
| :---: | :--- | :---: | :---: | :---: | :---: |
| $\mathbf{1 4}$ a | arranging items into <br> numerical order | $\frac{6+8}{2}$ |  | 2 | M1 |
|  |  | 7 |  | A1 |  |
| b |  | 8 | 1 | A1 |  |


| 15 | $4 x-5 y-3 \times 5=w y$ |  | 3 | M1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $4 x-15=y(w+5)$ |  |  | M1 dep |  |
|  |  | $y=\frac{4 x-15}{w+5} \text { (o.e.) }$ |  | A1 |  |
|  |  |  |  |  | Total 3 marks |
| Notes: 1. $4 x=w y+5 y+15 \quad$ (M1) <br> 2. $\quad 2^{\text {nd }}$ (M1) is for collecting terms in $y$ and factorising. | $\begin{aligned} & 4 x=w y+5 y+15 \\ & 2^{\text {nd }} \text { (M1) is for collecting terms in } y \text { and factorising. } \end{aligned}$ |  |  |  |  |


| Q Working |  | Answer | Mark | Notes |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1 6} \quad \mathrm{a}$ |  | Any positive number <br> less than 1 | 1 | B1 |
| b | $100 x=40 x^{2}$ <br> Accept $\frac{10}{\sqrt{40}}=\sqrt{x}$ or $x=\left(\frac{10}{\sqrt{40}}\right)^{2}$ for method | 2 | M1 |  |
|  |  | $x=2.5 \quad$ (o.e.) |  | A1 |

Notes: 1. (a) Answer can be embedded e.g. $\sqrt{1 / 4}$
2. (b) Do not penalise $x=0$ as an extra answer.

| $\mathbf{1 7}$ | balancing two equations Making $x / y$ the subject of <br> one equation <br>  Correctly deciding to <br> add/subtract <br>  Correctly substituting into <br> the second equation <br>  $x=3, y=-1$ | 4 | M1 |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | A1, A1 |  |


| $\mathbf{Q}$ Q Working | Answer | Mark | Notes |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 8}$ | $a: b=30: 48$ or $b: c=48: 200$ |  | 3 | M1Accept equivalent ratios for <br> method |  |
|  |  | $a: b: c=30: 48: 200$ <br> $a: b: c=15: 24: 100$ |  | A1 |  |
|  |  |  |  |  | Total 3 marks |
|  |  |  |  |  |  |

Notes: 1. $\frac{a}{b}=\frac{5 \times 3}{8 \times 3}$ or $\frac{b}{c}=\frac{6 \times 4}{25 \times 4}$
(M1)
$\frac{a}{b}=\frac{15}{24}$ and $\frac{b}{c}=\frac{24}{100}$
2. $\frac{6}{25}=\frac{8}{x}$ or $\frac{x}{6}=\frac{5}{8}$
$5: 8: \frac{100}{3}$ or $\frac{30}{8}: 6: 25$
3. $a=\frac{5}{8} b$ or $c=\frac{25}{6} b$
$\frac{5}{8}: 1: \frac{25}{6} \quad$ (o.e.)
(A1)
4. $\frac{6}{8} \times 5 \quad(3.75)$
(M1)
$3.75: 6: 25$
(A1)

| Q | Working | Answer | Mark | Notes |
| :---: | :--- | :---: | :---: | :---: |
| $\mathbf{1 9}$ | a | Penalise incorrect rounding/accuracy once only in the <br> question (the first time it occurs) <br> $\frac{B C}{12}=\sin 45^{\circ}$ (o.e.) | 2 |  |
| b | $(A B=) \quad " 8.49^{\prime \prime}+5 \cos 20^{\circ}$ | 8.49 cm |  | M1 |
|  |  | 13.2 cm | 2 | M1 |

Note: (a) For the (o.e.), accept $\frac{B C}{12}=\cos 45^{0}$ or $2 x^{2}=12^{2}$.

| 20 a  0.15 1 B1 <br>  b any two of the following combined <br> probabilities added together <br> $0.3 \times 0.3, \quad 0.1 \times 0.15, \quad 0.1 \times 0.15$ <br> $0.3 \times 0.3+0.1 \times 0.15+0.1 \times 0.15$ 3   |
| :--- |

(b) Accept correct fractions in compound probabilities

| Q | Working | Answer | Mark | Notes |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 21 a |  | $3^{6}$ | 1 | B1 |  |
| b | $3^{2 x+5}=3^{6014-x}$ |  | 3 | M1 |  |
|  | $2 x+5=" 6$ ". $5-x$ ) |  |  | M1 dep |  |
|  |  | $x=3 \frac{1}{8}\left(\frac{25}{8}, 3.125\right)$ |  | A1 |  |
|  |  |  |  |  | Total 4 marks |

Notes: 1. (a) $9^{3}=729$ earns (B0)
2. (b) For the $2^{\text {nd }}(\mathrm{M} 1)$, ft from their " 6 " from their $3^{" 6 "}$

| $\mathbf{2 2} \mathrm{a}$ |  | 16,12 | 2 | B1, B1ft |
| :--- | :--- | :---: | :---: | :---: |
| b |  | Heights: 6, 4.5 | 2 | B1, B1ft |

(b) "4.5" from their "12" . If $x$ is the incorrect final table entry, then height of last bar should be $\frac{x \times 4.5}{12}$.

| Q | Working | Answer | Mark | Notes |
| :---: | :---: | :---: | :---: | :---: |
| 23 a |  |  | 3 | B1, B1, B1 |
| b |  |  | 1 | B1 ft (Allow inverted shading) |
|  |  |  |  | Total 4 marks |

Notes: 1 (a) Penalise missing/incorrect labels once only (first time it occurs)
2. (a) $2 y=x+1$ must pass through $(1,1)$ and $(5,3)$ and $x+y=6$ must pass through $(0,6)$ and $(6,0)$.


Notes. 1. $\quad$ Must see a triangle $D$ to award any marks in part (d).

| Q Working |  | Answer | Mark | Notes |
| :---: | :--- | :---: | :---: | :---: |
| $\mathbf{2 5} \mathrm{a}$ | $9=k\left(\frac{1}{2}\right)^{3}$ |  | 3 | M1 |
|  |  | $k=72$ <br> $y=72 x^{3}$ |  | A1 |
|  |  |  | 2 | M1 |
|  | $x^{3}=\frac{125}{3 \times " 72^{\prime \prime}}$ | $x=\frac{5}{6}\left(\frac{125}{216}, 0.833\right)$ |  | A1 |
|  |  |  |  |  |

NB. (a) Accept $y=k x^{3}$ on answer line for final (A1) provided $k=72$ seen in working space
(b) Answer however must be a correct fraction or decimal which rounds to 0.833


Notes. Reasons must be consistent with the candidate's argument. Accept angles marked on the diagram.
(a) 'cyclic quadrilateral' sufficient reason
(b) First B1 for answer, second B1 for two reasons.

Alternative method: $\angle D A B=70^{\circ}$ ((sum of angles on a) straight line)

$$
\angle D C B=110^{\circ}((\text { opposite angles of a) cyclic quadrilateral })
$$

$$
\angle A C B=52^{\circ}(\mathrm{B} 1)(\mathrm{B} 1)
$$

| Q | Working | Answer | Mark | Notes |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 27 | $x(x-2)+1=\frac{9}{2}(x-2)$ <br> (correctly removing the algebraic fraction) |  | 5 | M1 |  |
|  | $2 x^{2}-13 x+20(=0)$ |  |  | A1 |  |
|  | Attempt to factorise/solve a quadratic equation |  |  | M1 |  |
|  |  | 2.5, 4 |  | A1, A1 |  |
|  |  |  |  |  | Total 5 marks |

NB. 1. Usual rule for factorising a trinomial quadratic. If the formula is used, it must be a correct substitution of their coefficients into a correctly quoted formula for (M1)
2. $\quad$ Award (M1)(A1) for $x^{2}-\frac{13}{2} x+10 \quad(=0)$
3. Usual rule for (M1) attempt to factorise. If formula used, correct substitution into a correctly quoted formula.
4. If the answers given are correct from incorrect working, then (A0)(A0)

| Q |  | Working | Answer | Mark | Notes |
| :--- | :--- | :--- | :--- | :---: | :---: |
| $\mathbf{2 8}$ | a | arc, radius 6 cm, centre $P$ <br> (must be complete inside the triangle [ignore <br> outside the triangle]) |  | B1 |  |
|  | b | perpendicular bisector of $Q R$ <br> (must be completely inside the triangle [can <br> extend beyond] for the 'A' mark) |  | M1, A1 |  |
|  | c | angle bisector of $P Q$ and $Q R$ <br> (must intersect PR for the 'A' mark) |  | M1, A1 |  |
|  | d | region T shaded and labelled. <br> (dependent on 3 attempted constructions) |  | B1 ft |  |
|  |  |  |  | Total 6 marks |  |



By this method (or any other equivalent trig. method), accept an answer of 7.99 (or better).
(b) Accept $3 \times x=6 \times 6$ for (M1)

